Cart (Loading....) | Create Account
Close category search window
 

On Relations Defined by Generalized Finite Automata

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

A transduction, in the sense of this paper, is a n-ary word relation (which may be a function) describable by a finite directed labeled graph. The notion of n-ary transduction is co-extensive with the Kleenean closure of finite n-ary relations. The 1-ary transductions are exactly the sets recognizable by finite automata. However, for n > 1 the relations recognizable by automata constitute a proper subclass of the n-ary transductions. The 2-ary length-preserving transductions constitute the equilibrium (potential) behavior of 1-dimensional, bilateral iterative networks. The immediate consequence relation of various primitive deductive (respectively computational) systems, such as Post normal systems (respectively Turing machines) are examples of transductions. Other riches deductive systems have immediate consequence relations which are not transductions. The closure properties of the class of transductions are studied. The decomposition of transductions into simpler ones is also studied.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:9 ,  Issue: 1 )

Date of Publication:

Jan. 1965

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.