By Topic

Analysis of the Impurity Atom Distribution Near the Diffusion Mask for a Planar p-n Junction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Presented here are the results from a mathematical investigation of the impurity atom distribution within a planar p-n junction. Two fundamentally different diffusion processes are considered: In the first, a constant impurity atom concentration is maintained at the semiconductor surface; in the second, a fixed quantity of impurity atoms is involved in the entire diffusion process. The results of this investigation show than a one-dimensional approximation inadequately characterizes the impurity atom distribution within a planar junction, and that in theory, the planar junction is not at a constant distance from its impurity atom source. Instead, the junction is closer to its source at the semiconductor surface than deep within the bulk material. Further, it is shown that when diffusion takes place from a source of constant concentration density, the junction impurity atom gradient is maximum at the semiconductor surface. In contrast, this junction impurity atom gradient is shown to exhibit a minimum at the semiconductor surface when the total number of impurity atoms is time invariant throughout the entire semiconductor material.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:9 ,  Issue: 3 )