By Topic

Statistical Analysis of Non-stationary Series of Events in a Data Base System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lewis, P.A.W. ; Naval Postgraduate School, Monterey, CA 93940, USA ; Shedler, G.S.

Central problems in the performance evaluation of computer systems are the description of the behavior of the system and characterization of the workload. One approach to these problems comprises the interactive combination of data-analytic procedures with probability modeling. This paper describes methods, both old and new, for the statistical analysis of non-stationary univariate stochastic point processes and sequences of positive random variables. Such processes are frequently encountered in computer systems. As an illustration of the methodology an analysis is given of the stochastic point process of transactions initiated in a running data base system. On the basis of the statistical analysis, a non-homogeneous Poisson process model for the transaction initiation process is postulated for periods of high system activity and found to be an adequate characterization of the data. For periods of lower system activity, the transaction initiation process has a complex structure, with more clustering evident. Overall models of this type have application to the validation of proposed data base subsystem models.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:20 ,  Issue: 5 )