By Topic

Micromechanical Membrane Switches on Silicon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Petersen, K.E. ; IBM Research Division laboratory, 5600 Cottle Road, San Jose, California 95193, USA

A new class of electronic devices, micromechanical membrane switches, has been developed. These switches have operating characteristics that fill the gap between conventional silicon transistors and mechanical electromagnetic relays. Although they are batch fabricated on silicon using conventional photolithographic and integrated circuit processing techniques, their unique properties allow them to perform functions not ordinarily associated with silicon. The devices are basically extremely small, electrostatically controlled mechanical relays, typically less than 100 µm long. Their high off- to on-state impedance ratio and all-metal conduction paths make them ideally suited for ac signal switching arrays. This paper describes the design, fabrication, operating behavior, and potential applications of these voltage-controlled, micromechanical switches.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:23 ,  Issue: 4 )