By Topic

On the robust estimation of the autocorrelation coefficients of stationary sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Batalama, S.N. ; Dept. of Electr. & Comput. Eng., State Univ. of New York, Buffalo, NY, USA ; Kazakos, D.

This paper discusses methods for the estimation of the autocorrelation coefficients of a finite-dependent stationary random sequence. Three estimators are examined: the sample average and two proposed approaches, namely the pseudo-maximum-likelihood (pseudo-ML) estimator and the pseudo-M estimator. The latter scheme is found as a solution of a Fredholm integral equation. All three estimators are first studied for specific distribution models. Then the existence of a minimax robust design is proved and a suboptimally robust scheme is proposed. Simulation results illustrate the theoretical foundations of the methods and indicate that the pseudo-M estimator achieves significantly better performance than the other two schemes when tested against dependent data and in the presence of outliers. Finally, the results may also be applied to the estimation of a location parameter of a dependent random sequence

Published in:

Signal Processing, IEEE Transactions on  (Volume:44 ,  Issue: 10 )