Cart (Loading....) | Create Account
Close category search window
 

Formulation and solution of structured total least norm problems for parameter estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Van Huffel, S. ; ESAT, Katholieke Univ., Leuven, Heverlee, Belgium ; Haesun Park ; Rosen, J.B.

The total least squares (TLS) method is a generalization of the least squares (LS) method for solving overdetermined sets of linear equations Ax≈b. The TLS method minimizes ||[E|-r]||F, where r=b-(A+E)x, so that (b-r)∈Range (A+E), given A∈Cm×n, with m⩾n and b∈Cm×1. The most common TLS algorithm is based on the singular value decomposition (SVD) of [A/b]. However, the SVD-based methods may not be appropriate when the matrix A has a special structure since they do not preserve the structure. Previously, a new problem formulation known as structured total least norm (STLN), and the algorithm for computing the STLN solution, have been developed. The STLN method preserves the special structure of A or [A/b] and can minimize the error in the discrete Lp norm, where p=1, 2 or ∞. In this paper, the STLN problem formulation is generalized for computing the solution of STLN problems with multiple right-hand sides AX≈B. It is shown that these problems can be converted to ordinary STLN problems with one right-hand side. In addition, the method is shown to converge to the optimal solution in certain model reduction problems. Furthermore, the application of the STLN method to various parameter estimation problems is studied in which the computed correction matrix applied to A or [A/B] keeps the same Toeplitz structure as the data matrix A of [A/B], respectively. In particular, the L2 norm STLN method is compared with the LS and TLS methods in deconvolution, transfer function modeling, and linear prediction problems

Published in:

Signal Processing, IEEE Transactions on  (Volume:44 ,  Issue: 10 )

Date of Publication:

Oct 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.