By Topic

An exhaustive search algorithm for checking limit cycle behavior of digital filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Premaratne, K. ; Dept. of Electr. & Comput. Eng., Miami Univ., Coral Gables, FL, USA ; Kulasekere, E.C. ; Bauer, P.H. ; Leclerc, L.-J.

The presence of limit cycles that may arise in fixed-point arithmetic implementation of a digital filter can significantly impair its performance. This paper presents an algorithm to determine the presence/absence of such limit cycles. For generality, the filter is taken to be in its state-space formulation. The algorithm is applicable independent of filter order, type of quantization nonlinearity, and whether the accumulator is single or double length. It may be utilized to construct limit cycle free regions in filter coefficient space. Once a filter is determined to be limit cycle free, a technique that provides a robustness region in coefficient space where all filters remain limit cycle free is also presented

Published in:

Signal Processing, IEEE Transactions on  (Volume:44 ,  Issue: 10 )