Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Advanced electron-beam lithography for 0.5-µm to 0.25-µm device fabrication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hohn, F.J. ; IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598, USA ; Wilson, A.D. ; Coane, P.

High-resolution lithographic capability is required for the fabrication of fully scaled semiconductor devices at minimum dimensions of 0.5 µm to 0.25 µm—the prototype for the semiconductor logic and memory CMOS devices of the 1990s. Electron-beam exposure tools provide this capability. Fully scaled 0.5-µm test devices were fabricated using a modified EL-3 variable shaped-electron-beam system, while 0.25-µm ground-rule lithography was accomplished with a Gaussian round-electron-beam Vector Scan system. An important part of this technology is the selection of lithographic resist system and the process used for pattern definition and transfer. Twelve or more lithographic steps are often needed for circuit devices with the above minimum dimensions. For fully scaled applications, each one of these pattern levels must be defined by electron-beam lithography, and each level may require a specific lithographic resist. Thus, the electron-beam system and the resist process must be mutually compatible if the required resolution, feature size control, and pattern-level-to-pattern-level overlay accuracy are to be achieved. This paper discusses the successful integration of e-beam lithography and resist technologies and their application to CMOS device fabrication.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:32 ,  Issue: 4 )