Cart (Loading....) | Create Account
Close category search window

Statistical properties of selected recording codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Howell, T.D. ; IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA

Most recording systems encode their data using binary run-length-limited (RLL) codes. Statistics such as the density of 1s, the probabilities of specific code strings or run lengths, and the power spectrum are useful in analyzing the performance of RLL codes in these applications. These statistics are easy to compute for ideal run-length-limited codes, those whose only constraints are the run-length limits, but ideal RLL codes are not usable in practice because their code rates are irrational. Implemented RLL codes achieve rational rates by not using all code sequences which satisfy the run-length constraints, and their statistics are different from those of the ideal RLL codes. Little attention has been paid to the computation of statistics for these practical codes. In this paper a method is presented for computing statistics of implemented codes. The key step is to develop an exact description of the code sequences which are used. A consequence of the code having rational rate is that all the code-string and run-length probabilities are rational. The method is illustrated by applying it to three codes of practical importance: MFM, (2, 7), and (1, 7).

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:33 ,  Issue: 1 )

Date of Publication:

Jan. 1989

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.