By Topic

High-density data storage using proximal probe techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Mamin, H.J. ; IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA ; Terris, B.D. ; Fan, L.-S. ; Hoen, S.
more authors

We describe some of the achievements and problems associated with proximal probe-based approaches to high-density data storage. While STM-based methods have demonstrated spectacular areal densities dwarfing anything achievable with today's storage technologies, reliability and data rate issues present serious obstacles. These problems have led us to focus on techniques based on AFM and near-field optics. First, we have developed a thermomechanical writing scheme using an AFM tip. We have addressed many of the practical issues involved, including data rate. With custom low-mass cantilevers, we have demonstrated readback on real data with a data rate of 1.2 Mb/s. We have also pursued nontopographic storage techniques based on charge storage in nitride-oxide semiconductor structures and near-field optical storage. These techniques should be able to achieve densities comparable to those reached with the AFM scheme, with the added advantage that they are fast and reversible. Although it is not yet clear whether any of these probe-based approaches can ever be made practical, they do represent potential pathways to the higher densities that will be needed in the decades ahead.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:39 ,  Issue: 6 )