Cart (Loading....) | Create Account
Close category search window
 

Magnetic properties of transition-metal multilayers studied with X-ray magnetic circular dichroism spectroscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stohr, J. ; IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA ; Nakajima, R.

The detailed understanding of the magnetic properties of transition-metal multilayers requires the use of state-of-the-art experimental techniques. Over the last few years, the X-ray magnetic circular dichroism (XMCD) technique has evolved into an important magnetometry tool. This paper is an overview of the principles and unique strengths of the technique. Aspects covered include the quantitative determination of element-specific spin and orbital magnetic moments and their anisotropies through sum-rule analyses of experimental spectra. A discussion is presented on how the spin and orbital magnetic moments in transition-metal thin films and sandwiches are modified relative to the bulk. We show that a thin film of a nonmagnetic metal such as Cu may become magnetically active when adjacent to a magnetic layer, and a thin film of a ferromagnetic metal such as Fe may become magnetically inactive. The orbital moment is found to become anisotropic in thin films; it can be regarded as the microscopic origin of the magnetocrystalline anisotropy.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:42 ,  Issue: 1 )

Date of Publication:

Jan. 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.