By Topic

Aluminum-based gate structure for active-matrix liquid crystal displays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
T. Arai ; IBM Japan Ltd., Display Technology, Display Business Unit, 1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken 242, Japan ; H. Iiyori ; Y. Hiromasu ; M. Atsumi
more authors

This paper describes the development of an Al-based thin-film gate structure for use in large, high-resolution active-matrix liquid crystal displays (AMLCDs). Aluminum films are suitable for forming the data lines of such displays, but they are not suitable for forming the gate lines because of the hillock-induced shorts that can occur to overlying metal lines during the heating necessary for insulator deposition. Alloying with yttrium, gadolinium, and neodymium was examined with the aim of reducing hillock and whisker formation during such heating. Although Al films alloyed with 2 at.% of those metals exhibited low hillock densities (10-100 mm−2), the densities were not low enough for the fabrication of SXGA (1280 × 1024 pixels) panels. After investigation of several means to further reduce the formation of hillocks and whiskers, the most effective approach was found to be anodization of the Al-alloy gate lines, suitably patterned for anodization, followed by photoresist application and laser-cutting steps. Illustratively, by use of an anodized Al-Nd (2 at.%) thin-film gate structure, the short- circuit defect rate and contact defect rate for an 11.3-in.-diagonal experimental SVGA (800 × 600 pixels) display could be effectively reduced to zero.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:42 ,  Issue: 3.4 )