By Topic

Large Barkhausen discontinuity of Co-Fe-Si-B amorphous films sputtered on polymer substrate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yano, N. ; R&D Center, UNITIKA Ltd., Kyoto, Japan ; Furukawa, S. ; Oka, K. ; Ogasawara, I.
more authors

Co-Fe-Si-B films have been prepared using a roll coater and DC magnetron sputtering system onto a polyethylene terephthalate substrate. This thin film exhibited an excellent uniaxial anisotropy introduced by an asymmetric thermal shrinkage of the substrate. Reversal with a single large Barkhausen pulse has been observed in thin film structure 1 mm by 50 mm by 0.65 μm. Closure domains have been clearly identified at the film ends. The threshold for the reversal is the coercive force. The reason for reversal with a single Barkhausen jump is that the long narrow film geometry has essentially zero demagnetizing field over most of the film. Once the walls start to move through the center portion of the film, there is nothing to stop them so the reversal proceeds with a single large Barkhausen pulse

Published in:

Magnetics, IEEE Transactions on  (Volume:32 ,  Issue: 5 )