Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Applying recursion to serial and parallel QR factorization leads to better performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Elmroth, E. ; Department of Computing Science and High Performance Computing Center North, Umeå University, SE-901 87, Sweden ; Gustavson, F.G.

We present new recursive serial and parallel algorithms for QR factorization of an m by n matrix. They improve performance. The recursion leads to an automatic variable blocking, and it also replaces a Level 2 part in a standard block algorithm with Level 3 operations. However, there are significant additional costs for creating and performing the updates, which prohibit the efficient use of the recursion for large n. We present a quantitative analysis of these extra costs. This analysis leads us to introduce a hybrid recursive algorithm that outperforms the LAPACK algorithm DGEQRF by about 20% for large square matrices and up to almost a factor of 3 for tall thin matrices. Uniprocessor performance results are presented for two IBM RS/6000® SP nodes—a 120-MHz IBM POWER2 node and one processor of a four-way 332-MHz IBM PowerPC® 604e SMP node. The hybrid recursive algorithm reaches more than 90% of the theoretical peak performance of the POWER2 node. Compared to standard block algorithms, the recursive approach also shows a significant advantage in the automatic tuning obtained from its automatic variable blocking. A successful parallel implementation on a four-way 332-MHz IBM PPC604e SMP node based on dynamic load balancing is presented. For two, three, and four processors it shows speedups of up to 1.97, 2.99, and 3.97.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:44 ,  Issue: 4 )