Cart (Loading....) | Create Account
Close category search window
 

A fuzzy linguistic model for the prediction of carpal tunnel syndrome risks in an occupational environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
McCauleyBell, P. ; Department of Industrial Engineering and Management Systems, University of Central Florida, PO Box 160450, Orlando, 32816-2450, USA ; Crumpton, L.

This research presents the development and evaluation of a fuzzy linguistic model designated to predict the risk of carpal tunnel syndrome (CTS) in an occupational setting. CTS has become one of the largest problems facing ergonomists and the medical community because it is developing in epidemic proportions within the occupational environment. In addition, practitioners are interested in identifying accurate methods for evaluating the risk of CTS in an occupational setting. It is hypothesized that many factors impact an individual's likelihood of developing CTS and the eventual development of CTS. This disparity in the occurrence of CTS for workers with similar backgrounds and work activities has confused researchers and has been a stumbling block in the development of a model for widespread use in evaluating the development of CTS. Thus this research is an attempt to develop a method that can be used to predict the likelihood of CTS risk in a variety of environments. The intent is that this model will be applied eventually in an occupational setting, thus model development was focused on a method that provided a usable interface and the desired system inputs can also be obtained without the benefit of a medical practitioner. The methodology involves knowledge acquisition to identify and categorize a holistic set of risk factors that include task-related, personal, and organizational categories. The determination of relative factor importance was accomplished using analytic hierarchy processing (AHP) analysis. Finally a mathematical representation of the CTS risk was accomplished by utilizing fuzzy set theory in order to quantify linguistic input parameters. An evaluation of the model including determination of sensitivity and specificity is conducted and the results of the model indicate that the results are fairly accurate and this method has the potential for widespread use. A significant aspect of this research is the comparison of this technique to other meth- ods for assessing presence of CTS. The results of this evaluation technique are compared with more traditional methods for assessing the presence of CTS.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:44 ,  Issue: 5 )

Date of Publication:

Sept. 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.