Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Influence of trapped and interfacial charges in organic multilayer light-emitting devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
6 Author(s)
Riess, W. ; IBM Research, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland ; Riel, H. ; Beierlein, T. ; Brutting, W.
more authors

Trapped and interfacial charges have significant impact on the performance of organic light-emitting devices (OLEDs). We have studied devices consisting of 20 nm copper phthalocyanine (CuPc) as the buffer and hole-injection layer, 50 nm N,N';-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine (NPB) as the hole transport layer, and 65 nm tris(8-hydroxyquinolinato)aluminum (Alq3) as the electron transport and emitting layer sandwiched between a high-work-function metal and a semitransparent Ca electrode. Current-voltage measurements show that the device characteristics in the negative bias direction and at low positive bias below the built-in voltage are influenced by trapped charges within the organic layers. This is manifested by a strong dependence of the current in this range on the direction and speed of the voltage sweep. Low-frequency capacitance-voltage and static charge measurements reveal a voltage-independent capacitance in the negative bias direction and a significant increase between 0 and 2 V in the given device configuration, indicating the presence of negative interfacial charges at the NPB/Alq3 interface. Transient experiments show that the delay time of electroluminescence at low voltages in these multilayer devices is controlled by the buildup of internal space charges, which facilitates electron injection, rather than by charge-carrier transport through the organic layers. To summarize, our results clearly demonstrate that the tailoring of internal barriers in multilayer devices leads to a significant improvement in device performance.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:45 ,  Issue: 1 )