By Topic

Quantum crystallography, a developing area of computational chemistry extending to macromolecules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huang, L. ; Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, D.C. 20375, USA ; Massa, L. ; Karle, J.

We describe the concept of quantum crystallography (QCr) and present examples of its potential as a technique for facilitating computational chemistry, particularly, applications of quantum mechanics. Structural information has been used to facilitate quantum-mechanical calculations for several decades. Recent advances in theory and computational facilities have led to research opportunities that could be considered only in the past several years. We focus on the feasibility of applications of quantum mechanics to macromolecules. The approach used involves the concept of calculations based on fragments of molecules. The method for constructing fragments, their composition, and how they are assembled to form a projector matrix are discussed without the introduction of mathematical detail. Papers that provide the theoretical basis for QCr and our method for making fragment calculations are referenced, and some initial calculations are described here.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:45 ,  Issue: 3.4 )