By Topic

Functional verification of the POWER4 microprocessor and POWER4 multiprocessor systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

25 Author(s)
Ludden, J.M. ; IBM Server Group, Burlington facility, Essex Junction, Vermont 05451, USA ; Roesner, W. ; Heiling, G.M. ; Reysa, J.R.
more authors

This paper describes the methods and simulation techniques used to verify the microarchitecture design and functional performance of the IBM POWER4 processor and the POWER4-based Regatta system. The approach was hierarchical, based on but considerably expanding the practice used for verification of the CMOS-based IBM S/390 Parallel Enterprise Server™ G4. For POWER4, verification began at the abstract, high-level design phase and continued throughout the designer and unit levels, the multi-unit level, and finally the multiple-chip system level. The abstract (high-level design) phase permitted early validation of the POWER4 processor design prior to its commitment to HDL. The designer and unit-level stages focused on ensuring the correctness of the microarchitectural components. Multi-unit-level verification, performed on storage and I/O components as well as on the processor, confirmed architectural compliance for each of the chips and subsystems. Finally, system-level verification tested multiprocess or coherence and system-level function, including processor-to-I/O communication and validation of multiple hardware configurations. In parallel with design and functional validation, verification of reliability functions, performance, and degraded configurations was also performed at most of the levels in the hierarchy.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:46 ,  Issue: 1 )