By Topic

A power, packaging, and cooling overview of the IBM eServer z900

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Singh, P. ; IBM Server Group, 2455 South Road, Poughkeepsie, New York 12601, USA ; Ahladas, S.J. ; Becker, W.D. ; Bosco, F.E.
more authors

This paper provides an overview of the power, packaging, and cooling aspects of the IBM eServer z900 design. The semiconductor processor chips must be supported and protected in a mechanical structure that has to provide electrical interconnects while maintaining the chip junction temperature within specified limits. The mechanical structure should be able to withstand shock and vibrations during transportation or events such as earthquakes. The processor chips require electrical power at well-regulated voltages, unaffected by the ac-line voltage and load current fluctuations. The acoustical and electromagnetic noise produced by the hardware must be within the limits set by national regulatory agencies, and the electronic operations must be adequately protected from disruption caused by electromagnetic radiation. For high availability, the power, packaging, and cooling hardware must have redundancy and the ability to be maintained while the system is operating. This paper first overviews the packaging hardware, followed by a description of the first- and second-level packaging, which includes the mother board and the multichip module. Thermal management is discussed from the point of view of both the multichip module and the overall system. Power conversion, management, and distribution are presented next. Finally, the design aspects involved with meeting the requirements of electromagnetic compatibility, acoustics, and immunity to shock, vibration, and earthquakes are discussed.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:46 ,  Issue: 6 )