By Topic

A pedestrian's introduction to spacetime crystallography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
T. Toffoli ; Boston University, Electrical and Computer Engineering Department, 8 Saint Mary's Street, Boston, Massachusetts 02215, USA

Ordinary crystallography deals with regular, discrete, static arrangements in space. Of course, dynamic considerations—and thus the additional dimension of time—must be introduced when one studies the origin of crystals (since they are emergent structures) and their physical properties such as conductivity and compressibility. The space and time of the dynamics in which the crystal is embedded are assumed to be those of ordinary continuous mechanics. In this paper, we take as the starting point a spacetime crystal, that is, the spacetime structure underlying a discrete and regular dynamics. A dynamics of this kind can be viewed as a “crystalline computer.” After considering transformations that leave this structure invariant, we turn to the possible states of this crystal, that is, the discrete spacetime histories that can take place in it and how they transform under different crystal transformations. This introduction to spacetime crystallography provides the rationale for making certain definitions and addressing specific issues; presents the novel features of this approach to crystallography by analogy and by contrast with conventional crystallography; and raises issues that have no counterpart there.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:48 ,  Issue: 1 )