Cart (Loading....) | Create Account
Close category search window
 

Design and validation of a performance and power simulator for PowerPC systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shafi, H. ; IBM Research Division, Austin Research Laboratory, 11501 Burnet Road, Texas 78758, USA ; Bohrer, P.J. ; Phelan, J. ; Rusu, C.A.
more authors

This paper describes the design and validation of a performance and power simulator that is part of the Mambo simulation environment for PowerPC® systems. One of the most notable features of the simulator, designated as Tempo, is the incorporation of an event-driven power model. Tempo satisfies an important need for fast and accurate performance and power simulation tools at the system level. The power and performance predictions from the simulated model of a PowerPC 405GP (or simply 405GP) were validated against a 405GP-based evaluation board instrumented for power measurements using 42 application/dataset combinations from the EEMBC benchmark suite. The average performance and energy-prediction errors were 0.6% and ࢤ4.1%, respectively. In addition to describing Tempo, we show examples of how well it can predict the runtime power consumption of a 405GP microprocessor during application execution.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:47 ,  Issue: 5.6 )

Date of Publication:

Sept. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.