By Topic

Verification strategy for the Blue Gene/L chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

21 Author(s)
Wazlowski, M.E. ; IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598, USA ; Adiga, N.R. ; Beece, D.K. ; Bellofatto, R.
more authors

The Blue Gene®/L compute chip contains two PowerPC® 440 processor cores, private L2 prefetch caches, a shared L3 cache and double-data-rate synchronous dynamic random access memory (DDR SDRAM) memory controller, a collective network interface, a torus network interface, a physical network interface, an interrupt controller, and a bridge interface to slower devices. System-on-a-chip verification problems require a multilevel verification strategy in which the strengths of each layer offset the weaknesses of another layer. The verification strategy we adopted relies on the combined strengths of random simulation, directed simulation, and code-driven simulation at the unit and system levels. The strengths and weaknesses of the various techniques and our reasons for choosing them are discussed. The verification platform is based on event simulation and cycle simulation running on a farm of Intel-processor-based machines, several PowerPC-processor-based machines, and the internally developed hardware accelerator Awan. The cost/performance tradeoffs of the different platforms are analyzed. The success of the first Blue Gene/L nodes, which worked within days of receiving them and had only a small number of undetected bugs (none fatal), reflects both careful design and a comprehensive verification strategy.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:49 ,  Issue: 2.3 )