By Topic

Blue Gene/L advanced diagnostics environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

15 Author(s)
M. E. Giampapa ; IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598, USA ; R. Bellofatto ; M. A. Blumrich ; D. Chen
more authors

This paper describes the Blue Gene®/L advanced diagnostics environment (ADE) used throughout all aspects of the Blue Gene/L project, including design, logic verification, bring-up, diagnostics, and manufacturing test. The Blue Gene/L ADE consists of a lightweight multithreaded coherence-managed kernel, runtime libraries, device drivers, system programming interfaces, compilers, and host-based development tools. It provides complete and flexible access to all features of the Blue Gene/L hardware. Prior to the existence of hardware, ADE was used on Very high-speed integrated circuit Hardware Description Language (VHDL) models, not only for logic verification, but also for performance measurements, code-path analysis, and evaluation of architectural tradeoffs. During early hardware bring-up, the ability to run in a cycle-reproducible manner on both hardware and VHDL proved invaluable in fault isolation and analysis. However, ADE is also capable of supporting high-performance applications and parallel test cases, thereby permitting us to stress the hardware to the limits of its capabilities. This paper also provides insights into system-level and device-level programming of Blue Gene/L to assist developers of high-performance applications o more fully exploit the performance of the machine.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:49 ,  Issue: 2.3 )