By Topic

Polymer self assembly in semiconductor microelectronics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Black, C.T. ; Brookhaven National Laboratory, Center for Functional Nanomaterials, Upton, New York 11973, USA ; Ruiz, R. ; Breyta, G. ; Cheng, J.Y.
more authors

We are inspired by the beauty and simplicity of self-organizing materials and the promise they hold for enabling continued improvements in semiconductor technology. Self assembly is the spontaneous arrangement of individual elements into regular patterns; under suitable conditions, certain materials self organize into useful nanometer-scale patterns of importance to high-performance microelectronics applications. Polymer self assembly is a nontraditional approach to patterning integrated circuit elements at dimensions and densities inaccessible to traditional lithography methods. We review here our efforts in IBM to develop and integrate self-assembly processes as high-resolution patterning alternatives and to demonstrate targeted applications in semiconductor device fabrication. We also provide a framework for understanding key requirements for the adoption of polymer self-assembly processes into semiconductor technology, as well as a discussion of the ultimate dimensional scalability of the technique.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:51 ,  Issue: 5 )