Cart (Loading....) | Create Account
Close category search window
 

Workforce optimization: Identification and assignment of professional workers using constraint programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Naveh, Y. ; IBM Haifa Research Laboratory, Haifa University Campus, 31905, Israel ; Richter, Y. ; Altshuler, Y. ; Gresh, D.L.
more authors

Matching highly skilled people to available positions is a high-stakes task that requires careful consideration by experienced resource managers. A wrong decision may result in significant loss of value due to understaffing, underqualification or overqualification of assigned personnel, and high turnover of poorly matched workers. While the importance of quality matching is clear, dealing with pools of hundreds of jobs and resources in a dynamic market generates a significant amount of pressure to make decisions rapidly. We present a novel solution designed to bridge the gap between the need for high-quality matches and the need for timeliness. By applying constraint programming, a subfield of artificial intelligence, we are able to deal successfully with the complex constraints encountered in the field and reach near-optimal assignments that take into account all resources and positions in the pool. The considerations include constraints on job role, skill level, geographical location, language, potential retraining, and many more. Constraints are applied at both the individual and team levels. This paper introduces the technology and then describes its use by IBM Global Services, where large numbers of service and consulting employees are considered when forming teams assigned to customer projects.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:51 ,  Issue: 3.4 )

Date of Publication:

May 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.