By Topic

Massively parallel quantum chromodynamics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Vranas, P. ; Lawrence Livermore National Laboratory, California 94550, USA ; Blumrich, M.A. ; Chen, D. ; Gara, A.
more authors

Quantum chromodynamics (QCD), the theory of the strong nuclear force, can be numerically simulated on massively parallel supercomputers using the method of lattice gauge theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures for which LQCD suggests a need. We demonstrate these methods on the IBM Blue Gene/L™ (BG/L) massively parallel supercomputer and argue that the BG/L architecture is very well suited for LQCD studies. This suitability arises from the fact that LQCD is a regular lattice discretization of space into lattice sites, while the BG/L supercomputer is a discretization of space into compute nodes. Both LQCD and the BG/L architecture are constrained by the requirement of short-distance exchanges. This simple relation is technologically important and theoretically intriguing. We demonstrate a computational speedup of LQCD using up to 131,072 CPUs on the largest BG/L supercomputer available in 2007. As the number of CPUs is increased, the speedup increases linearly with sustained performance of about 20% of the maximum possible hardware speed. This corresponds to a maximum of 70.5 sustained teraflops. At these speeds, LQCD and the BG/L supercomputer are able to produce theoretical results for the next generation of strong-interaction physics.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:52 ,  Issue: 1.2 )