By Topic

EUDOC on the IBM Blue Gene/L system: Accelerating the transfer of drug discoveries from laboratory to patient

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Pang, Y.-P. ; Computer-Aided Molecular Design Laboratory, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA ; Mullins, T.J. ; Swartz, B.A. ; McAllister, J.S.
more authors

EUDOC™ is a molecular docking program that has successfully helped to identify new drug leads. This virtual screening (VS) tool identifies drug candidates by computationally testing the binding of these drugs to biologically important protein targets. This approach can reduce the research time required of biochemists, accelerating the identification of therapeutically useful drugs and helping to transfer discoveries from the laboratory to the patient. Migration of the EUDOC application code to the IBM Blue Gene/L™ (BG/L) supercomputer has been highly successful. This migration led to a 200-fold improvement in elapsed time for a representative VS application benchmark. Three focus areas provided benefits. First, we enhanced the performance of serial code through application redesign, hand-tuning, and increased usage of SIMD (single-instruction, multiple-data) floating-point unit operations. Second, we studied computational load-balancing schemes to maximize processor utilization and application scalability for the massively parallel architecture of the BG/L system. Third, we greatly enhanced system I/O interaction design. We also identified and resolved severe performance bottlenecks, allowing for efficient performance on more than 4,000 processors. This paper describes specific improvements in each of the areas of focus.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:52 ,  Issue: 1.2 )