By Topic

Transition-metal-oxide-based resistance-change memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

15 Author(s)
S. F. Karg ; IBM Research Division, Zurich Research Laboratory, Säumerstrasse 4, 8803 Rüschlikon, Switzerland ; G. I. Meijer ; J. G. Bednorz ; C. T. Rettner
more authors

We provide a status report on the development of perovskite-based transition-metal-oxide resistance-change memories. We focus on bipolar resistance switching observed in Cr-doped SrTiO3 memory cells with dimensions ranging from bulk single crystals to CMOS integrated nanoscale devices. We also discuss electronic and ionic processes during electroforming and resistance switching, as evidenced from electron-parametric resonance (EPR), x-ray absorption spectroscopy, electroluminescence spectroscopy, thermal imaging, and transport experiments. EPR in combination with electroluminescence reveals electron trapping and detrapping processes at the Cr site. Results of x-ray absorption experiments prove that the microscopic origin of the electroforming, that is, the insulator-to-metal transition, is the creation of oxygen vacancies. Cr-doped SrTiO3 memory cells exhibit short programming times (≤100 ns) and low programming currents (<100 µA) with up to 105 write and erase cycles.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:52 ,  Issue: 4.5 )