By Topic

Undetected disk errors in RAID arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hafner, J.L. ; IBM Research Division, IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA ; Deenadhayalan, V. ; Belluomini, W. ; Rao, K.

Though remarkably reliable, disk drives do fail occasionally. Most failures can be detected immediately; moreover, such failures can be modeled and addressed using technologies such as RAID (Redundant Arrays of Independent Disks). Unfortunately, disk drives can experience errors that are undetected by the drive—which we refer to as undetected disk errors (UDEs). These errors can cause silent data corruption that may go completely undetected (until a system or application malfunction) or may be detected by software in the storage I/O stack. Continual increases in disk densities or in storage array sizes and more significantly the introduction of desktop-class drives in enterprise storage systems are increasing the likelihood of UDEs in a given system. Therefore, the incorporation of UDE detection (and correction) into storage systems is necessary to prevent increasing numbers of data corruption and data loss events. In this paper, we discuss the causes of UDEs and their effects on data integrity. We describe some of the basic techniques that have been applied to address this problem at various software layers in the I/O stack and describe a family of solutions that can be integrated into the RAID subsystem.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:52 ,  Issue: 4.5 )