Cart (Loading....) | Create Account
Close category search window
 

Overview of candidate device technologies for storage-class memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Burr, G.W. ; IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, USA ; Kurdi, B.N. ; Scott, J.C. ; Lam, C.H.
more authors

Storage-class memory (SCM) combines the benefits of a solid-state memory, such as high performance and robustness, with the archival capabilities and low cost of conventional hard-disk magnetic storage. Such a device would require a solid-state nonvolatile memory technology that could be manufactured at an extremely high effective areal density using some combination of sublithographic patterning techniques, multiple bits per cell, and multiple layers of devices. We review the candidate solid-state nonvolatile memory technologies that potentially could be used to construct such an SCM. We discuss evolutionary extensions of conventional flash memory, such as SONOS (silicon-oxide-nitride-oxide-silicon) and nanotraps, as well as a number of revolutionary new memory technologies. We review the capabilities of ferroelectric, magnetic, phase-change, and resistive random-access memories, including perovskites and solid electrolytes, and finally organic and polymeric memory. The potential for practical scaling to ultrahigh effective areal density for each of these candidate technologies is then compared.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:52 ,  Issue: 4.5 )

Date of Publication:

July 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.