By Topic

Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shtaif, M. ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; Eisenstein, G.

This paper addresses noise properties of nonlinear semiconductor optical amplifiers. From a basic point of view, noise properties of nonlinear optical amplifiers are sufficiently different from those of linear amplifiers to warrant detailed modeling which has not been formulated previously. From a practical point of view, nonlinear semiconductor optical amplifiers are important for future all-optical signal-processing applications which may involve the operation of these devices in a saturated regime. Nonlinear amplifiers are also common in systems operating near 1300 nm and in integrated booster amplifiers. Under nonlinear operating conditions, amplifier noise contains a narrow-band contribution that comes about due to the nonlinear coupling of noise and gain. The more conventional broadband spontaneous noise also changes as the inversion factor becomes power-dependent and varies along the amplifier axis. We analyze noise in nonlinear amplifiers in the Gaussian limit (meaning, for fields consisting of large photon numbers) for CW or NRZ modulated signals and separately for short pulses. We consider the case of a single input as well as configurations of multi-input signals interacting via four-wave mixing. Using a specific detection system for the calculations of electronic signal-to-noise ratios, we demonstrate a reduction in the narrow-band electronic noise due to saturation in the single input case. We also demonstrate a vast advantage of using short pulses in four-wave-mixing applications

Published in:

Quantum Electronics, IEEE Journal of  (Volume:32 ,  Issue: 10 )