By Topic

E-broidery: Design and fabrication of textile-based computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Post, E.R. ; MIT Media Laboratory, 20 Ames Street, Cambridge, Massachusetts 02139-4307, USA ; Orth, M. ; Russo, P.R. ; Gershenfeld, N.

Highly durable, flexible, and even washable multilayer electronic circuitry can be constructed on textile substrates, using conductive yarns and suitably packaged components. In this paper we describe the development of e-broidery (electronic embroidery, i.e., the patterning of conductive textiles by numerically controlled sewing or weaving processes) as a means of creating computationally active textiles. We compare textiles to existing flexible circuit substrates with regard to durability, conformability, and wearability. We also report on: some unique applications enabled by our work; the construction of sensors and user interface elements in textiles; and a complete process for creating flexible multilayer circuits on fabric substrates. This process maintains close compatibility with existing electronic components and design tools, while optimizing design techniques and component packages for use in textiles.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Systems Journal  (Volume:39 ,  Issue: 3.4 )