By Topic

Large-scale virtual screening for discovering leads in the postgenomic era

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
B. Waszkowycz ; Protherics Molecular Design Ltd., Beechfield House, Lyme Green Business Park, Macclesfield, Cheshire SK11 0JL, United Kingdom ; T. D. J. Perkins ; R. A. Sykes ; J. Li

Virtual screening, or in silico screening, is a new approach attracting increasing levels of interest in the pharmaceutical industry as a productive and cost-effective technology in the search for novel lead compounds. Although the principles involved—the computational analysis of chemical databases to identify compounds appropriate for a given biological receptor—have been pursued for several years in molecular modeling groups, the availability of inexpensive high-performance computing platforms has transformed the process so that increasingly complex and more accurate analyses can be performed on very large data sets. The virtual screening technology of Protherics Molecular Design Ltd. is based on its integrated software environment for receptor-based drug design, called Prometheus. In particular, molecular docking is used to predict the binding modes and binding affinities of every compound in the data set to a given biological receptor. This method represents a very detailed and relevant basis for prioritizing compounds for biological screening. This paper discusses the broader scope of virtual screening and, as an example, describes our recent work in docking one million compounds into the estrogen hormone receptor in order to highlight the technical feasibility of performing very large-scale virtual screening as a route to identifying novel drug leads.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Systems Journal  (Volume:40 ,  Issue: 2 )