By Topic

New techniques for extracting features from protein sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wang, J.T.L. ; Novartis Pharmaceuticals Corporation, Summit, New Jersey 07901, USA ; Ma, Q. ; Shasha, D. ; Wu, C.H.

In this paper we propose new techniques to extract features from protein sequences. We then use the features as inputs for a Bayesian neural network (BNN) and apply the BNN to classifying protein sequences obtained from the PIR (Protein Information Resource) database maintained at the National Biomedical Research Foundation. To evaluate the performance of the proposed approach, we compare it with other protein classifiers built based on sequence alignment and machine learning methods. Experimental results show the high precision of the proposed classifier and the complementarity of the bioinformatics tools studied in the paper.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Systems Journal  (Volume:40 ,  Issue: 2 )