By Topic

Privacy-preserving user clustering in a social network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Erkin, Z. ; Multimedia Signal Process. Group, Delft Univ. of Technol., Delft, Netherlands ; Veugen, T. ; Toft, T. ; Lagendijk, R.L.

In a ubiquitously connected world, social networks are playing an important role on the Internet by allowing users to find groups of people with similar interests. The data needed to construct such networks may be considered sensitive personal information by the users, which raises privacy concerns. The problem of building social networks while user privacy is protected is hence crucial for further development of such networks. K-means clustering is widely used for clustering users in a social network. In this paper, we provide an efficient privacy-preserving variant of K-means clustering. The scenario we consider involves a server and multiple users where users need to be grouped into K clusters. In our protocol the server is not allowed to learn the individual user data and users are not allowed to learn the cluster centers. The experiments on the MovieLens dataset show that deployment of the system for real use is reasonable as its efficiency even on conventional hardware is promising.

Published in:

Information Forensics and Security, 2009. WIFS 2009. First IEEE International Workshop on

Date of Conference:

6-9 Dec. 2009