By Topic

Fast method for precoding and decoding of distributive multi-input multi-output channels in relay-based decode-and-forward cooperative wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lee, M.H. ; Inst. of Inf. & Commun., Chonbuk Nat. Univ., Jeonju, South Korea ; Matalgah, M.M. ; Song, W.

It is well-known that the performance of the relay-based decode-and-forward (DF) cooperative networks outperforms the performance of the amplify-and-forward cooperative networks. However, this performance improvement is accomplished at the expense of adding more signal processing complexity (precoding/decoding) at each relay node. In this study, the authors tackle this signal processing complexity issue by proposing a Jacket-based fast method for reducing the precoding/decoding complexity in terms of time computation. Jacket transforms have shown to find applications in signal processing and coding theory. Jacket transforms are defined to be n??n matrices A=(a jk) over a field F with the property AA ??=nI n, where A ?? is the transpose matrix of the element-wise inverse of A, that is, A ??=(a kj -1), which generalise Hadamard transforms and centre weighted Hadamard transforms. In particular, exploiting the Jacket transform properties, the authors propose a new eigenvalue decomposition (EVD) method with application in precoding and decoding of distributive multi-input multi-output channels in relay-based DF cooperative wireless networks in which the transmission is based on using single-symbol decodable space-time block codes. The authors show that the proposed Jacket-based method of EVD has significant reduction in its computational time as compared to the conventional-based EVD method. Performance in terms of computational time reduction is evaluated quantitatively through mathematical analysis and numerical results.

Published in:

Communications, IET  (Volume:4 ,  Issue: 2 )