By Topic

Assessing Software Service Quality and Trustworthiness at Selection Time

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Limam, N. ; Div. of IT Convergence Eng., POSTECH-Pohang Univ. of Sci. & Technol., Pohang, South Korea ; Boutaba, R.

The integration of external software in project development is challenging and risky, notably because the execution quality of the software and the trustworthiness of the software provider may be unknown at integration time. This is a timely problem and of increasing importance with the advent of the SaaS model of service delivery. Therefore, in choosing the SaaS service to utilize, project managers must identify and evaluate the level of risk associated with each candidate. Trust is commonly assessed through reputation systems; however, existing systems rely on ratings provided by consumers. This raises numerous issues involving the subjectivity and unfairness of the service ratings. This paper describes a framework for reputation-aware software service selection and rating. A selection algorithm is devised for service recommendation, providing SaaS consumers with the best possible choices based on quality, cost, and trust. An automated rating model, based on the expectancy-disconfirmation theory from market science, is also defined to overcome feedback subjectivity issues. The proposed rating and selection models are validated through simulations, demonstrating that the system can effectively capture service behavior and recommend the best possible choices.

Published in:

Software Engineering, IEEE Transactions on  (Volume:36 ,  Issue: 4 )