By Topic

Exception Handling Patterns for Process Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lerner, B.S. ; Comput. Sci. Dept., Mount Holyoke Coll., South Hadley, MA, USA ; Christov, S. ; Osterweil, L.J. ; Bendraou, R.
more authors

Process modeling allows for analysis and improvement of processes that coordinate multiple people and tools working together to carry out a task. Process modeling typically focuses on the normative process, that is, how the collaboration transpires when everything goes as desired. Unfortunately, real-world processes rarely proceed that smoothly. A more complete analysis of a process requires that the process model also include details about what to do when exceptional situations arise. We have found that, in many cases, there are abstract patterns that capture the relationship between exception handling tasks and the normative process. Just as object-oriented design patterns facilitate the development, documentation, and maintenance of object-oriented programs, we believe that process patterns can facilitate the development, documentation, and maintenance of process models. In this paper, we focus on the exception handling patterns that we have observed over many years of process modeling. We describe these patterns using three process modeling notations: UML 2.0 Activity Diagrams, BPMN, and Little-JIL. We present both the abstract structure of the pattern as well as examples of the pattern in use. We also provide some preliminary statistical survey data to support the claim that these patterns are found commonly in actual use and discuss the relative merits of the three notations with respect to their ability to represent these patterns.

Published in:

Software Engineering, IEEE Transactions on  (Volume:36 ,  Issue: 2 )