By Topic

Fast construction of k-nearest neighbor graphs for point clouds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Michael Connor ; Florida State University, Tallahassee ; Piyush Kumar

We present a parallel algorithm for k-nearest neighbor graph construction that uses Morton ordering. Experiments show that our approach has the following advantages over existing methods: 1) faster construction of k-nearest neighbor graphs in practice on multicore machines, 2) less space usage, 3) better cache efficiency, 4) ability to handle large data sets, and 5) ease of parallelization and implementation. If the point set has a bounded expansion constant, our algorithm requires one-comparison-based parallel sort of points, according to Morton order plus near-linear additional steps to output the k-nearest neighbor graph.

Published in:

IEEE Transactions on Visualization and Computer Graphics  (Volume:16 ,  Issue: 4 )