By Topic

A Comprehensive Analysis of Bandwidth Request Mechanisms in IEEE 802.16 Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
David Chuck ; Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, USA ; Kuan-Yu Chen ; J. Morris Chang

The IEEE 802.16 standard is considered to be one of the most promising technologies. Bandwidth reservation is employed to provide quality of service (QoS)-guaranteeing services. A request/grant scheme is defined in the IEEE 802.16 standard. There are two types of bandwidth request (BR) mechanisms, i.e., unicast polling and contention resolution, which are defined in the standard. As specified, connections belonging to scheduling classes of extended real-time polling service, non-real-time polling service, and best effort have options to make BRs via both mechanisms, depending on the scheduling decision made by the base station (BS). However, most research assumes that only one of them is available and do not take both of them into account. A comprehensive study of both mechanisms is critical for the BS to make an appropriate decision for those connections to achieve better system performance. To the best of our knowledge, this is the first attempt to analyze this issue. There are two major contributions presented in this paper. First, a comprehensive study of both BR mechanisms in terms of bandwidth utilization and delay is provided. Additionally, we propose two practical performance objectives: When the expected delay or target bandwidth utilization is given, how does the BS make a scheduling decision such that the performance of the other metric (either delay or bandwidth utilization) is optimized? As our second contribution, we proposed two scheduling algorithms to find the combination of both mechanisms to meet our objectives. The simulation results show that our scheduling algorithms can always help the BS make a scheduling decision to reach better system performance.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:59 ,  Issue: 4 )