Cart (Loading....) | Create Account
Close category search window

Energy-efficient directional routing between partitioned actors in wireless sensor and actor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Selvaradjou, K. ; Indian Inst. of Technol. Madras, Chennai, India ; Handigol, N. ; Franklin, A.A. ; Murthy, C.S.R.

Actor-actor communication is an important part of the functioning of wireless sensor-actor networks and enables the actor nodes to take coordinated action on a given event. Owing to various reasons such as actor mobility and low actor density, the actor network tends to get partitioned. The authors propose to use the underlying sensor nodes, which are more densely deployed, to heal these partitions. In order to maximise the utilisation of the limited energy available with the sensor nodes, a new routing protocol for actor-actor communication using directional antennas on the actor nodes is proposed. The authors contribution is threefold. First, using simulations they show that the problem of partitioning in the actor networks is significant and propose an architecture with directional antennas on actor nodes and sensor bridges to heal these partitions. Second, they identify the routing problem for this architecture based on a theoretical framework and propose centralised as well as distributed solutions to it. Third, they develop a routing protocol based on the distributed solution and show, using network simulations, that the proposed protocol not only heals the network partitions successfully, but also achieves high throughput and fairness across different flows, in addition to maximising the network lifetime.

Published in:

Communications, IET  (Volume:4 ,  Issue: 1 )

Date of Publication:

January 5 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.