By Topic

Mining closed frequent itemsets in the sliding window over data stream

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mao Yinmin ; Sch. of Inf. Sci. & Eng., Central South Univ., Changsha, China ; Yang Lumin ; Li Hong ; Chen Zhigang
more authors

Mining closed frequent itemsets in the sliding window is one of important topics of data streams mining. In this paper, we propose an algorithm, MCFI-SW, which mines closed frequent itemsets in the sliding window of data streams efficiently. It uses a CFP-tree based on FP-tree to record the current information in stream and prunes the obsolete items and a lot of infrequent items by operating the pointer. A novel approach is presented to mine a set of closed frequent itemsets in the CFP-tree. Theoretical analysis and experimental results show that the proposed method is efficient and scalable.

Published in:

Information, Computing and Telecommunication, 2009. YC-ICT '09. IEEE Youth Conference on

Date of Conference:

20-21 Sept. 2009