By Topic

A Fault-Tolerant Layer for Dynamically Reconfigurable Multi-processor System-on-Chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hung-Manh Pham ; INRIA, Univ. of Rennes 1, Lannion, France ; Pillement, Sebastien ; Demigny, D.

Parallel computing is an important trend of embedded system. One possible response to increasing requirements in computational power is to distribute tasks over various processors and let these processors operate in parallel. Soft-core processors and FPGAs require low Non-Recurring Engineering costs to develop such multi-processors systems. Furthermore, certain FPGAs allow dynamic partial run-time reconfiguration, but their high sensitivity to electronic defects can cause the system disfunction. This paper presents a fault-tolerant multi-processor system-on-chip based on the dynamic reconfiguration of the entire platform. Also, a modification of the standard methodology of the runtime self-reconfiguration, who facilitates the complex modular concept design, is presented in this paper.

Published in:

Reconfigurable Computing and FPGAs, 2009. ReConFig '09. International Conference on

Date of Conference:

9-11 Dec. 2009