By Topic

A Hybrid Method of Genetic Algorithms and Ant Colony Optimization to Solve the Traveling Salesman Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Takahashi, R. ; Hachinohe Inst. of Technol., Japan

A new hybrid method iterative extended changing crossover operators which can efficiently obtain the optimum solution of the traveling salesman problem through flexibly alternating ant colony optimization (ACO) which simulates process of learning swarm intelligence in ants' feeding behavior and edge assembly crossover (EAX) which has been recently noticed as an available method for efficient selection of optimum solution with preserving diversity of chromosomes at any time, is studied. It automatically controls the generation on which it exchanges ACO for EAX by observing diversity and convergence of chromosomes generated by ACO with both lengths and their variance. It uses ACO in early stage of generations to create variable local optimum solutions and it uses EAX in later stage of generations efficiently to generate global optimum solutions using chromosomes generated by ACO. If it cannot find the optimum solution in this trial it makes ACO regenerate new chromosomes to merge with the last best solution searched through EAX in order to maintain diversity of chromosomes, before it makes EAX reproduce better solutions with the merged chromosomes. This trial is repeatedly executed until EAX can find the best solution. In this paper its validity is experimentally verified by using medium-sized TSP data.

Published in:

Machine Learning and Applications, 2009. ICMLA '09. International Conference on

Date of Conference:

13-15 Dec. 2009