Cart (Loading....) | Create Account
Close category search window
 

Differentially Expressed Gene Identification Based on Separability Index

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Perez, M. ; Dept. of Electr. & Electron. Eng. Technol., Univ. of Johannesburg, Johannesburg, South Africa ; Featherston, J. ; Rubin, D.M. ; Marwala, T.
more authors

The identification of differentially expressed genes is central to microarray data analysis. Presented in this paper is an approach to differentially expressed gene identification based on a Separability Index (SI). Features are selected by identifying the optimal number of top ranking genes which result in maximum class separability. The approach was implemented on a training dataset comprising 400 samples from three types of cancers: colon, breast and lung cancer. The top 4222 genes resulted in a maximum separability of 91%. These genes were then used to classify a testing dataset comprising 250 samples, using a K-nearest neighbour (K-NN) classifier, achieving an accuracy of 92%. This outperformed a K-NN classifier trained on features selected based on p ¿1:8311 × 10-7 (Bonferroni corrected p-value cut-off criterion of p ¿0:01), which achieved an accuracy of 89.6%. The performance is attributed to the non-arbitrary nature of the maximum SI selection criterion, which is an inherent property of the data, as opposed to the arbitrary assignment of a p-value cut-off. Hierarchical clustering was used to identify clusters of genes, amongst the 4222 genes, with similar expression patterns for each of the three cancers. These clusters were then examined for functional enrichment and significant biological pathways, which were identified for all three cancer types.

Published in:

Machine Learning and Applications, 2009. ICMLA '09. International Conference on

Date of Conference:

13-15 Dec. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.