By Topic

Impact of Feature Selection on Support Vector Machine Using Microarray Gene Expression Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wahid, C.M.M. ; Sch. of Comput. Sci., CQ Univ., QLD, Australia ; Ali, A.B.M.S. ; Tickle, K.

Recent researches have investigated the impact of feature selection methods on the performance of support vector machine (SVM) and claimed that no feature selection methods improve it in high dimension. However, they have based this argument on their experiments with simulated data. We have taken this claim as a research issue and investigated different feature selection methods on the real time micro array gene expression data. Our research outcome indicates that feature selection methods do have a positive impact on the performance of SVM in classifying micro array gene expression data.

Published in:

Machine Vision, 2009. ICMV '09. Second International Conference on

Date of Conference:

28-30 Dec. 2009