By Topic

Research on the Personalized Privacy Preserving Distributed Data Mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yanguang Shen ; Sch. of Inf. Sci. & Electr. Eng., Hebei Univ. of Eng., Handan, China ; Hui Shao ; Yan Li

In this paper we studied privacy preserving distributed data mining. The existing methods focus on a universal approach that exerts preservation in the same degree for all persons, without catering for their concrete needs. In view of this we innovatively proposed a new framework combining the secure multiparty computation (SMC) with K-anonymity technology, and achieved personalized privacy preserving distributed data mining based on decision tree classification algorithm. Compared with other algorithms our method could make a good trade-off point between privacy and accuracy, with high efficiency and low-overhead of computing and communication.

Published in:

Future Information Technology and Management Engineering, 2009. FITME '09. Second International Conference on

Date of Conference:

13-14 Dec. 2009