By Topic

A Three-Pass System Combination Framework by Combining Multiple Hypothesis Alignment Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jinhua Du ; Sch. of Comput., Dublin City Univ., Dublin, Ireland ; Way, A.

So far, many effective hypothesis alignment metrics have been proposed and applied to the system combination, such as TER, HMM, ITER and IHMM. In addition, the Minimum Bayes-risk (MBR) decoding and the confusion network (CN) have become the state-of-the-art techniques in system combination. In this paper, we present a three-pass system combination strategy that can combine hypothesis alignment results derived from different alignment metrics to generate a better translation. Firstly the different alignment metrics are carried out to align the backbone and hypotheses, and the individual CN is built corresponding to each alignment results; then we construct a super network by merging the multiple metric-based CN and generate a consensus output. Finally a modified consensus network MBR (ConMBR) approach is employed to search a best translation. Our proposed strategy outperforms the best single CN as well as the best single system in our experiments on NIST Chinese-to-English test set.

Published in:

Asian Language Processing, 2009. IALP '09. International Conference on

Date of Conference:

7-9 Dec. 2009