Cart (Loading....) | Create Account
Close category search window

Surgically Returning to Randomized lib(c)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Roglia, G.F. ; Dipt. di Inf. e Comun., Univ. degli Studi di Milano, Milan, Italy ; Martignoni, L. ; Paleari, R. ; Bruschi, D.

To strengthen systems against code injection attacks, the write or execute only policy (W¿X) and address space layout randomization (ASLR) are typically used in combination. The former separates data and code, while the latter randomizes the layout of a process. In this paper we present a new attack to bypass W¿X and ASLR. The state-of-the-art attack against this combination of protections is based on brute-force, while ours is based on the leakage of sensitive information about the memory layout of the process. Using our attack an attacker can exploit the majority of programs vulnerable to stack-based buffer overflows surgically, i.e., in a single attempt. We have estimated that our attack is feasible on 95.6% and 61.8% executables (of medium size) for Intel x86 and x86-64 architectures, respectively. We also analyze the effectiveness of other existing protections at preventing our attack. We conclude that position independent executables (PIE) are essential to complement ASLR and to prevent our attack. However, PIE requires recompilation, it is often not adopted even when supported, and it is not available on all ASLR-capable operating systems. To overcome these limitations, we propose a new protection that is as effective as PIE, does not require recompilation, and introduces only a minimal overhead.

Published in:

Computer Security Applications Conference, 2009. ACSAC '09. Annual

Date of Conference:

7-11 Dec. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.