By Topic

Delay monitoring for wireless sensor networks: An architecture using air sniffers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Wei Zeng ; Comput. Sci.&Eng. Dept., Univ. of Connecticut, Storrs, CT, USA ; Xian Chen ; Yoo-Ah Kim ; Zhengming Bu
more authors

Wireless sensor networks have been used for many delay-sensitive applications, e.g., emergency response and plant automation. In such networks, delay measurement is important for a number of reasons, e.g., real-time control of the networked system, and abnormal delay detection. In this paper, we propose a measurement architecture using distributed air sniffers, which provides convenient delay measurement, and requires no clock synchronization or instrumentation at the sensor nodes. One challenge in deploying this architecture is how to place the sniffers for efficient delay measurement. We prove the sniffer placement problem is NP-hard and develop two algorithms to solve it. Using a combination of small-scale testbed experiments and large-scale simulation, we demonstrate that our architecture leads to accurate delay monitoring and is effective in detecting abnormal delays, and furthermore, the number of sniffers required by our sniffer placement algorithms is close to the minimum required value.

Published in:

Military Communications Conference, 2009. MILCOM 2009. IEEE

Date of Conference:

18-21 Oct. 2009